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Abstract

Understanding treatment effect heterogeneity is important, but many standard approaches to estimate
heterogeneous treatment effects rely on strong assumptions. We present a novel approach to estimate
heterogeneous treatment effects in a variety of experimental and observational set-ups commonly used in
economics and political science such as multi-arm RCTs and difference-in-differences designs. We set up
the estimation and inference problem in the form of a linear varying coefficient model and use Bayesian
Additive Regression Trees (BART) to estimate the coefficients. We demonstrate how the approach can
be leveraged to understand heterogeneity in multi-arm experiments and difference-in-differences designs.
Our approach makes no parametric assumptions about the treatment effect function and estimates it
using a flexible regression tree ensemble. We illustrate the benefits of using the approach to estimate
heterogeneous treatment effects for studies across various sub-fields of political science. In doing so, our
study adds to the growing literature on using flexible machine-learning methods for causal inference.

1 Introduction

Understanding heterogeneity of treatment effects — how the effects of interventions varies across the popu-
lation — is important for social science research. Uncovering heterogeneous treatment effects not only helps
scholars better understand the underlying mechanisms driving observed outcomes, but also help practition-
ers design personalized and effective interventions by helping them efficiently target scarce resources. To
probe for potential effect heterogeneity, researchers often first fit a linear model, regressing the outcome onto
treatment variables and other covariates. Then, they elaborate the initial model with additional interactions
between the treatment variables and covariates, which may be discrete (e.g., indicators encoding sex or po-
litical affiliation) or continuous (e.g., age). Although fitting such models is straightforward and exceedingly
common in practice, including a single multiplicative interaction implicitly assumes that the treatment’s
effect changes linearly with respect to the covariate. Such a strong functional form assumption is typically
unrealistic in practice (Hainmueller et al., 2019) and the resulting model may return biased causal effects
due to model misspecification (Blackwell and Olson, 2022).

One way to overcome misspecification bias is to increase the representational flexibility of the model by
introducing additional interaction terms. For instance, to allow a treatment’s effect to vary nonlinearly with
respect to a single covariate, one may interact the treatment variable with functions of the covariate (e.g.,
age, age-squared, etc.) To allow a treatment’s effect to vary with respect to multiple covariates, one may
include higher-order interaction terms to the model. Unfortunately, when the number of covariates is large
— as is increasingly the case in the empirical literature — the number of model parameter quickly explodes
and the model becomes increasingly difficult to interpret. And models with many interaction terms may
still be misspecified For that reason, many practitioners have turned to flexible machine learning models
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to fit their data without pre-specifying the functional form of the relationship between outcome, treatment,
and covariates. Despite their conceptual elegance and excellent predictive performance, methods relying on
machine learning often require considerable more computational and statistical sophistication to implement,
understand, and explain than the familiar linear models with interactions. The platonic ideal between these
two extremes — misspecified but easy-to-use linear models and flexible but difficult-to-use machine learning
models — would retain the familiarity and ease-of-use of the former but the expressivity of the latter.

In this paper, we demonstrate how a new Bayesian semiparametric method for fitting varying coefficient
models, which is known as VCBART (Deshpande et al., 2024), comes close to this ideal. This article is
structured as follows. In Section 2, we show how one can mitigate the risk of bias from fitting parameter
models with misspecific interactions by casting the HTE estimation problem as one of fitting varying co-
efficient models (Hastie and Tibshirani, 1993). Then, in Section 3, we review VCBART, a new Bayesian
nonparametric approach to fitting varying coefficient models, and explain how to use VCBART for both
exploratory and confirmatory analyses. In Section 4, we use VCBART to reanalyze data from two recent
studies that utilized different observational and experimental designs. We find substantively and statistically
similar results when we estimate the ATE using the VCBART approach. Moreover, we are able to leverage
sources of heterogeneity in confirmatory analysis testing known sub-groups (based on rurality Section 4.1
and ideology Section 4.2) and further uncover additional sources of heterogeneity using exploratory analysis.
We conclude with a discussion in Section 5.

2 Motivating the use of varying coefficient models

We first review the core issues with interacted linear models in simplest setting involving a randomized
control trial with a binary treatment. The issues we present, however, extend to more general settings and
more involved designs. Then, we introduce varying coefficient models and explain how they generalize linear
models with interactions.

2.1 Limitations of interaction terms

Suppose that we are interested in how the effect of a binary treatment Z on an outcome Y might vary
with respect to a single covariate X. Researchers usually quantify heterogeneous effects with the condi-
tional average treatment effect function (CATE(x)), which is the amount by which an outcome Y observed
under treatment (Z = 1) differs from the outcome observed under control (Z = 0), averaged across the
subpopulation with covariate x. They usually formalize this comparison using potential outcomes (Splawa-
Neyman et al., 1990; Rubin, 1974). Let Y (1) and Y (0) respectively denote the potential outcomes that
would be observed if someone were in the exposed or control group. Formally, the target estimand is
CATE(x) = E[Y (1)− Y (0)|X = x].

Implicit in this notation is the “stable unit treatment value assumption” (SUTVA; Rubin, 1980; Imbens and
Rubin, 2015). Under SUTVA and the standard (and frequently invoked) assumptions of strong ignorability
and overlap, one can identify

CATE(x) = E[Y |Z = 1, X = x]− E[Y |Z = 0, X = x].

Thus, to estimate CATE(x), it suffices to regress the observed outcomes onto the observed covariate and
treatment indicator.

Perhaps the most common approach begins with the linear model

Y = β0 + β1Z + β2X + ϵ, (1)

where the error ϵ is assumed to be mean-zero. Although this model is simple to fit (e.g., using ordinary least
squares) and features easy-to-interpret parameters, it rigidly assumes that the treatment has a constant
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effect. Specifically, under the standard identification assumptions and the model assumption in (1), we
compute CATE(x) = β1 for all x.

Because simply linearly regressing Y onto X and Z provides little information about potential effect hetero-
geneity, it is exceedingly common to elaborate the model in Equation (1) with a multiplicative interaction
term and to assume

Y = β0 + β1Z + β2X + β3X × Z + ϵ. (2)

Implicit in (2) is the assumption that Z’s effect on Y is linear in X. Specifically, we compute CATE(x) =
β1 + β3x. When X is binary — that is, when X indicates membership into one or two subgroups — this
assumption is fairly innocuous, as β3 simply measures difference in the treatment’s effect in each subgroup.
But when X is continuous, this strong functional form assumption severely limits our ability to detect
important heterogeneity and is often violated in practice (Hainmueller et al., 2019). For instance, suppose
we wished to understand how the effectiveness of a voter education program changes with age. Because it
assumes that effectiveness increases or decreases at a constant rate over time, the model in (2) cannot detect
whether the effect attenuates or levels off as people get older. In other words, the model may be misspecified
and the resulting model misspecification may result in highly biased estimates of CATE(x) (see, e.g., §2.2
Blackwell and Olson, 2022).

To mitigate the risks of potential misspecification bias, it is tempting to refine model (2) by adding non-
linear functions of X and interactions between those non-linearities and Z. Specifically, for a fixed basis of
pre-specified functions ϕ1(x), . . . , ϕD(x), we could fit

Y = β0 + β1Z +

D∑
d=1

γdϕd(X) +

D∑
d=1

δdϕd(X)× Z + ϵ (3)

Compared to Equations (1) and (2), the model in Equation (3) is conceptually much more compelling
because it allows the treatment’s effect vary non-linearly with X. Indeed under (3), we have CATE(x) =
β1 +

∑
d δdϕd(x). But fitting the more flexible model in practice is requires us to make several modeling

decisions (viz., what and how many basis functions), each of which exposes us to potential misspecification
bias. Returning to the voter education example, a model that interacts treatment with polynomials of age
would return very biased estimates of an effect with diminishing (i.e. logarithmic) returns.

So even in the simplest setting with binary treatment and a single covariate, it is exceedingly difficult to
correctly specify a sufficiently flexible linear model with interactions. These challenges are only magnified
in the presence of multiple covariates and treatment variables. In Section 4.2, for instance, we re-analyze
a study with n = 2040 observations and p = 105 covariates, of which 100 are binary and 5 are continuous.
Including all two- and three-way interactions between binary covariates and the treatment variable introduces
a huge number of parameters. Including further interactions in attempt to avoid what Blackwell and Olson
(2022) term “omitted interaction bias” explodes the number of parameters. Fitting such highly parametrized
models in practice involves requires careful regularization to prevent over-fitting and considerable statistical
sophistication to derive standard errors under suitable asymptotic and regularity conditions.

2.2 Varying coefficient models

Given the nigh impossibility in correctly specifying sufficiently flexible linear models with interactions, re-
searchers are increasingly turning to machine learning models. At a high level, most of these ML-based
workflows for heterogeneous treatment effect estimation begin by first estimating the response surface
E[Y |X = x, Z = z] as a function of a (potentially high-dimensional) vector of covariates X. Typically,
this estimation is done with by training a highly parametrized model like a neural network or regression
tree ensemble with regularization to prevent over-fitting. Then, one computes estimates of the CATE(x) by
evaluating the estimated response surface at different (x, z) values and taking differences; see, for instance
Hill (2011) and Athey and Wager (2019).

3



Although the regularization utilized in the first step of these workflows can produce extremely accurate
estimates of the response surface and predictions of the outcome, they can indirectly yield highly biased
estimates of causal estimands. Hahn et al. (2018) termed this “regularization induced confounding” while
Blackwell and Olson (2022) distinguish between “direct regularization bias” and “indirect regularization
bias.” Further, the models used to estimate the response surface are often difficult to interpret and can
demand considerable computational sophistication on the part of practitioners given the complex parameter
tuning involved and lack of user-friendly software packages.

We argue that varying coefficient models (Hastie and Tibshirani, 1993) represent a compelling middle
ground between highly parametrized (but likely misspecified) linear models with interactions and difficult-
to-understand machine learning models. In its most general form, a linear varying coefficient model posits a
linear relationship between an outcome Y and R predictors Z1, . . . , ZR that is allowed to change according
to the value of p covariates X1, . . . , Xp. Collecting the covariates into a single vector X = (X1, . . . , Xp)

⊤,
the model asserts

Y = β0(X) + β1(X)Z1 + · · ·+ βR(X)ZR + ϵ, (4)

where β0(X), . . . , βR(X) are functions of a p-dimensional input and the error ϵ has mean-zero.

The varying coefficient model in Equation (4) generalizes the linear models with interactions in Equations (2)
and (3): although the outcome is linear in Z, the slopes are allowed to change as arbitrary functions of the
vector of covariates X. In this way, varying coefficient models strike a balance between fully parametric
models, which making strong functional form assumptions that are almost certainly misspecified, and fully
nonparametric machine learning models, which obscure the relationship between the outcome, covariates,
and treatment variables. As we detail in Section 4, we can cast the problem of heterogeneous effect estimation
in a wide variety of designs popular in political science within a varying coefficients framework.

Varying coefficient models have enjoyed a long history in Statistics and Econometrics. They have also been
used sparingly in the Political Science. An important early example is Jackson (1991), which not only
provides examples of models of political science theories that can benefit from varying coefficients approach,
but also contrasts the flexible methods with the biased OLS estimates using simulation studies. More
recently, Hainmueller et al. (2019, §4.2) suggested the use of varying coefficients as an alternative to linear
models with interactions. These papers, however, focused on settings with scalar covariates.

For our purposes, the ideal estimation method (i) imposes no functional form assumptions about the coef-
ficient functions βj(x); (ii) returns accurate point estimates of and well-calibrated uncertainty intervals for
both individual βj(x) values (i.e., causal quantities) and the response surface E[Y |X = x,Z = z]; (iii) scales
to datasets with many observations (i.e., large n) and covariates (i.e., large p); and (iv) can be run easily
“off-the-shelf” by researchers who do not have considerable statistical or computational expertise.

Unfortunately, until recently, most procedures for fitting varying coefficients with p > 1 covariates fail to meet
all these desiderata. For instance, Lee et al. (2012) and Tibshirani and Friedman (2020) both assumed that
the βj(x)’s additive functions of the covariates. Although Li and Racine (2010)’s kernel smoothing procedure
does not impose strong structural assumption, it involves tuning a several bandwidth parameters with leave-
one-out cross-validation, which becomes computationally prohibitive when n and p are large. Further,
their implementation, which is available in the np R package (Hayfield and Racine, 2008), does not return
uncertainty interval by default, forcing practitioners to roll their own re-sampling or bootstrap procedures.
In Section 3 we introduce a relatively new Bayesian nonparametric method, VCBART (Deshpande et al.,
2024), which meets our desiderata.

3 Estimating varying coefficient models using VCBART

Deshpande et al. (2024) introduced a new Bayesian semiparametric model called VCBART to estimate
varying coefficient models. At a high level, VCBART works by approximating each function βj(x) in
Equation (4) with an ensemble of regression trees (i.e., piecewise-constant step functions). As a Bayesian
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procedure, VCBART formally computes a posterior distribution over the collection of regression tree ensem-
bles. It is this posterior — and not hypothesized repeated sampling — that serves as the basis of all of our
inference about heterogeneous individual and group-level causal effects. Because the posterior is analytically
intractable, posterior summaries are computing using Markov chain Monte Carlo (MCMC).

In Section 3.1, we provide a high-level overview of the VCBART prior and describe the MCMC computa-
tionally strategy; we refer interested readers to §3 and Appendix S4 of Deshpande et al. (2024) for the full
technical details. Then, in Section 3.2, we describe how to use the output of VCBART to draw

3.1 The VCBART prior & Gibbs sampler

Before describing how VCBART works, we introduce some notation. Without loss of generality, suppose
that all covariates have been scaled to the interval [0, 1] (i.e., X ∈ [0, 1]p) 1. Formally, a regression tree is
the pair (T ,Λ) consisting of (i) a finite binary decision tree T containing several terminal (or leaf) nodes
and several non-terminal or decision nodes; and (ii) a collection Λ of scalars, one for each terminal or leaf
node of the tree. Each decision node of T is associated with a decision rule of the form {Xj < c}. Given
a decision tree T , we can associate every x ∈ [0, 1]p with a unique leaf node, which we denote ℓ(x; T ) by
tracing a path from the root of T down the tree. Starting from the root node, whenever the path encounters
the rule {Xj < c}, the path proceeds to left child if xj < c and to the right otherwise until it reaches a
leaf node, which we denote ℓ(x; T ). In this way, the decision tree T partitions [0, 1]p into several disjoint
axis-parallel rectangular boxes, one for each leaf node. By associating each leaf ℓ with its own scalar λℓ and
denoting the collection of all λℓ’s by Λ, the pair (T ,Λ) represents a piecewise constant function over [0, 1]p

(Figure 1). Formally, we let g(x; T ,Λ) = λℓ(x;T ) denote the evaluation function that returns the scalar in Λ
associated to the leaf ℓ(x; T ).

λ4

λ3

λ2λ1

1

X1 < 0.7

2X2 < 0.6

4X1 < 0.3

8

λ1

9

λ2

5

λ3
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Figure 1: Example of a piecewise constant step function defined over [0, 1]2 (left) and its regression tree
representation (right)

For each r = 0, . . . , R, VCBART introduces a collection (hereafter ensemble) of T regression trees Er =
{(Tr,t,Λr,t)}Tt=1 and approximates each βr(X) as a sum of the trees in Er

βr(x) =

T∑
t=1

g(x; Tr,t,Λr,t). (5)

Regression tree prior. VCBART models each ensemble E0, . . . , ER independently a priori and specifies
independent and identical priors on the individual regression trees within each ensemble. The regression tree
is best described implicitly with a three-step procedure for simulating prior samples. First, the graphical
structure — that is the overall arrangement of the internal and leaf nodes and the edges — is simulated

1VCBART can handle both continuous and categorical predictors. See Deshpande (2024) and Deshpande et al. (2024) for
details.
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recursively with a branching process: starting from the root node, every time a new node is added to the
tree, two more child nodes are randomly attached to it with decreasing probability. Then, conditionally
on the graphical structure, a decision rule is drawn for every internal node by first randomly selecting the
splitting variable Xj uniformly and then sampling the cutpoint c uniformly from the set of valid values of
Xj at that node. In Figure 1, the set of valid values for X1 and X2 at node 5 are, respectively, [0, 0.7]
and [0.6, 1]. Finally, the scalars λℓ are drawn independently from mean-zero normal distributions with small
variance.

The regression tree prior introduces strong regularization towards relatively shallow trees that do not explain
too much variation in Y (Chipman et al., 2010). That is, the prior strongly encourages each tree to be a
“weak learner,” in the sense that while no individual tree in the ensemble Er closely approximates the function
βr(x), their aggregation does. Although the regression tree prior depends on several prior hyperparameters,
building on recommendations from Chipman et al. (2010), Deshpande et al. (2024) provide several default
choices that work well across a wide range of problems; see §3.1 and Appendix S2 of that paper for full
details.

Sampling from the VCBART posterior. Like most extensions of BART, VCBART uses a Gibbs sampler
to simulate approximate samples from the joint posterior distribution of the regression tree ensembles and
σ2. In each iteration, (i) the regression trees are updated sequentially one-at-a-time while keeping the other
trees and σ2 and then (ii) σ2 is updated conditionally on keeping all the trees fixed. Each regression tree
update involves sampling a new pair (T ,Λ) from its conditional posterior given all the other trees, σ2, and the
observed data. We sample a new regression tree in two steps. First, we draw a new decision tree T from its
marginal distribution using a Metropolis-Hasting steps in which a random proposal is made by either growing
or pruning the existing tree structure. Then, new leaf node parameters Λ are sampled conditionally given
the new decision tree. For a full derivation of the sampler, please see §3.2 and Appendix S3 of Deshpande
et al. (2024).

3.2 Summarizing the posterior of causal estimands

The VCBART posterior quantifies the joint uncertainty about the functions β0(X), . . . , βR(X) and the
residual standard deviation σ based on the observed data and the prior. Uncertainty about these functions
induces uncertainty about the values of several quantities including, but not limited to, a single function
(e.g., βr(x)) or contrasts of multiple functions (e.g., βr(x)−βs(x)) evaluated at a specific input or averaged
across multiple inputs. Under suitable identifying assumptions, such quantities capture the heterogeneous
effect of a particular treatment relative to control or other treatment for a particular individual or subgroup
of individuals. We can use the draws returned by the VCBART Gibbs sampler to simulate draws from the
posterior distributions of these causal quantity of interest.

For the ease of exposition, we describe this process in the simplest setting with a binary treatment (i.e.,
R = 1) and under suitable assumptions to identity β1(X) = CATE(X) = E[Y (1) − Y (0)|X]. Formally,

consider the m-th posterior draw (E(m)
0 , E(m)

1 , σ(m)). Using the sampled regression tree ensemble E(m)
1 , we

can compute, for all subjects i in our sample, a posterior draw of the CATEevaluated at their covariates
using Equation (5):

β(m)(xi) =

T∑
t=1

g(xi; T (m)
r,t ,Λ

(m)
r,t ).

For each individual i, we can then approximate summaries like the posterior mean or posterior credible

intervals using the samples β
(1)
1 (xi), . . . , β

(M)
1 (xi).

Beyond summarizing the posterior of individual CATEevaluations, we can use the samples of E1 to compute
samples of sample average effects. For instance, we can compute the m-th posterior draw of the sample
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average treatment effect (ATE) and samples average treatment effect on the treated (ATT) as

ATE(m) = n−1
n∑

i=1

β
(m)
1 (xi)

ATT(m) = n−1
1

∑
i:zi=1

β
(m)
1 (xi),

where n1 = #{i : zi = 1} counts the number of treated subjects.

Confirmatory subgroup analyses. In some scenarios, theory may suggest that a treatment’s effect differs
across known subgroups. We can use the VCBART samples to formally test whether there is a difference in
the average effect within two known subgroups, S0 and S1. Letting n0 = |S0| and n1 = |S1|, be the number of
subjects in each subgroup, we can compute the m-th posterior sample of the difference in average treatment
effect within each subgroup is simply

∆(m)(S0,S1) = n−1
0 ×

∑
i∈S0

β
(m)
1 (xi)− n−1

1 ×
∑
i∈S1

β
(m)
1 (xi).

We can then report the mean (resp. quantiles) of the ∆(m)(S0,S1)’s as a posterior point estimate and
uncertainty intervals of the difference in average subgroup effect. We can further approximate the posterior
probability that the treatment’s effect in subgroup S0 exceeds its effect in S1 with the proportion of positive
∆(m)(S0,S1)’s.

Importantly, subgroup analysis in VCBART does not require one to pre-specify the subgroups in advance.
Instead, one can re-use the same posterior samples of tree ensembles to generate posterior samples of average
effects within as many subgroups as one likes. One could even re-use the samples to compare two subgroups
based on a comparison of two other subgroups. This is in sharp contrast with the interacted linear model, in
which subgroups must be pre-specified and explicit interactions between subgroup indicators and treatment
must be included in the model in advance. Conducting post-hoc subgroup analyses with the interacted linear
model often involves running several model specifications. It is generally difficult to perform simultaneously
valid frequentist inference based on adaptively re-running multiple model specifications with the same data.
Re-using the VCBART samples to conduct additional post-hoc subgroup analyses does not face the same
sorts of multiple testing issues. This is because the basis of our inference remains the same posterior; we are
simply computing different aspects of this single distribution.

Exploratory subgroup analysis. We can even use the VCBART posterior samples to discover and
compre new subgroups. This is especially helpful in settings where p is large and we lack strong theory
about what might drive treatment effect heterogeneity. We do this using a three-step procedure sometimes
called “fitting-the-fit”, which as emerged as an increasingly popular way to summarize heterogeneity in a
parsimonious fashion (see, e.g., Hahn and Carvalho, 2015; Puelz et al., 2017; Fisher et al., 2020; Bolfarine
et al., 2024; Fisher et al., 2024).

In the first step, we compute the posterior mean of β1(xi) for each subject i. Then, we build a single
classification and regression tree to predict these posterior means using the fully vector of covariates. Each
node in this fitted tree represent a different subgroup defined by different combinations of covariate splits.
We can then use the procedure described above to compute, for instance, the posterior probability that the
effect is greater in one discovered subgroup than in another. Importantly, so long as we just re-use the same
posterior samples, such adaptive subgroup discovery does not introduce multiple testing challenges.

4 Empirical Examples

4.1 Crime reporting

Sukhtankar et al. (2022) conduct experiments to evaluate reforms that improve police responsiveness to
women in India. More specifically, they introduce dedicated spaces for women in local police stations staffed
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by trained officers and test whether it can address under-reported gender-based violence. The study finds
that officers in stations with the dedicated spaces (called Women’s Help Desks or WHDs) are more likely to
register cases of gender-based violence.

The experiment consists of three arms: the control arm Z0, and the two treatment arms Z1 and Z2 . Z1

is a bundled treatment of three interventions: private spaces, officer training and outreach to local safety
networks. Z2 adds a fourth component to the bundle in Z1 – that the WHDs would be exclusively run by
female officers. The unit of randomization is at the police station, and researchers are interested in evaluating
these two arms on registered cases of domestic violence (which is a substantively important subset of gender-
based violence cases).

Identification and Estimation In this experiment, we are interested to understand how the effect of
treatments Z1 and Z2 vary with possible covariates. We learn from the replication archives for this paper
that the researchers could only make limited attributes publicly available, since the names of police stations
(the unit of analysis) and accompanying characteristics were retracted to preserve anonymity as required by
the IRB. Nevertheless, they share one binary covariate (rurality) and seven continuous covariates (baseline
measures of violence) that form our possible p = 8 covariates X = (X1, ..., X8)

T of interest.

Let Y (0), Y (1) and Y (2) denote the potential outcomes under Z0, Z1 and Z2 respectively. Under SUTVA,
strong ignorability and overlap, we can identify the target estimand to be: CATE(x) = E[Y |Z2 = 1, X =
x] − E[Y |Z2 = 0, X = x] and CATE(x) = E[Y |Z1 = 1, X = x] − E[Y |Z1 = 0, X = x]. We estimate the
CATE(x) by estimating βj(X) in the varying coefficient model:

Y = β0(X) + β1(X)Z1 + β2(X)Z2 + ϵ (6)

Main Results. Using VCBART, we are able to estimate individual level treatment effects as seen in Figure
2 for β1(X) and Figure 3 for β2(X). From the ITE plots, we can see that there are some police stations with
effects close to 0, while there are other police stations with larger effects, which hints at possible unexplored
sources of heterogeneity. We compute the ATE by taking the average of the samples of the average treatment
effect and find that Z1 = 1.4, Z2 = 1.3 as compared to the OLS results where Z1 = 1.5 and Z2 = 1.4.

Figure 2: Individual Treatment Effects: Regular help-desks

Confirmatory subgroup analysis based on rurality. We can test one possible source of heterogeneity
by comparing police stations in rural and urban areas. Using the process explained in Section 3.2, we create
two known subgroups: S0 consisting of urban police stations and S1 consisting of rural police stations. For
each posterior sample, we compute the difference of the average effect in each subgroup. We finally plot a
histogram of these differences in Figure 4. Through this exercise, we learn that treatment effect is highest
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Figure 3: Individual Treatment Effects: Women run help-desks

in urban areas: for the first treatment condition, 0.89 more cases are registered per month in urban areas
as compared to rural areas. This has important policy implications - given that the intervention is much
more effective in urban areas, it either be efficient to roll-out the intervention to these stations first, or the
intervention might need more components to be equally effective in rural areas. Importantly, we are able to
say this with high confidence – the posterior probability that the treatment in S0 is greater than S1 is 1.
In other words, we find that in 100% of the posterior samples, the effect for the subgroup of urban police
stations is greater than the effect for the subgroup of rural police stations.

Figure 4: Comparing CATEs for Rural and Urban Police Stations

4.2 Narrative strategies

Exclusionary attitudes are harmful - and previous experiments have found that interpersonal conversations
having multiple narrative strategies can reduce exclusionary attitudes. Kalla and Broockman (2023) attempt
to distinguish between three narrative strategies that could work - essentially trying to ‘unbundle’ the treat-
ment, in order to understand which of the conversational strategies actually reduce exclusionary attitudes
and reduce prejudice. Understanding sources of heterogeneity can help us answer who is most affected by
the interpersonal conversations employing various narrative strategies.

9



We reanalyze these three experiments and use VCBART to flexibly model the outcomes. Our contribution
is to better understand heterogeneity of treatment effects of the many experiments. This can help us answer
who is most affected by the interpersonal conversations employing various narrative strategies. In doing so,
we demonstrate that our approach is suitable for a number of different design choices. We re-analyze two
experiments from this paper.

The first experiment consists of two narrative strategies – respondents are randomly assigned to either a
control condition Z0 where canvassers have short conversations about an unrelated topic with the respon-
dents. The first treatment arm Z1 consists of three components: a ‘Perspective-Getting’ strategy which
involves the canvasser sharing a story about an immigrant, a ‘Vicarious Perspective-Giving’ strategy that
involves the respondent sharing a personal narrative about an undocumented immigrant and an ‘Analogic
Perspective-Taking’ strategy that asks respondents to share a time when they needed care or support. The
second treatment arm Z2 is the same as intervention Z1, except that the ‘analogic perspective-taking’ nar-
rative strategy is excluded. The authors main outcome of interest is an index based on respondents’ policy
support for unauthorized immigrants in government programs and a prejudice index.

Identification and Estimation #1 Similar to the previous experiment, we are interested to understand
how the effect of treatments Z1 and Z2 vary with possible covariates. A rich set of covariates is captured
for each respondent – a hundred binary and five continuous together form our potential p = 105 covariates
X = (X1, X2, ...X105) that can drive treatment effect heterogeneity.

Let Y (0), Y (1) and Y (2) denote the potential outcomes under Z0, Z1 and Z2 respectively. Under SUTVA,
strong ignorability and overlap, we can identify the target estimand to be: CATE(x) = E[Y |Z2 = 1, X =
x] − E[Y |Z2 = 0, X = x] and CATE(x) = E[Y |Z1 = 1, X = x] − E[Y |Z1 = 0, X = x]. We estimate the
CATE(x) by estimating βj(X) in the varying coefficient model:

Y = β0(X) + β1(X)Z1 + β2(X)Z2 + ϵ (7)

Main Results #1. In order to estimate the ATE by using VCBART, we first set up the data in its
‘long’ format since each respondent responds at many time points. Next we set up the same covariates as
categorical or continuous covariates and add an additional categorical variable denoting the time period in
which the response was collected. Finally, we use VCBART to flexibly estimate treatment effects of the
interventions on the combined index. We compute the ATE by taking the average of the sample average
treatment effect associated with each posterior draw. We find that the full intervention has an ATE (with
credible intervals) of 0.089 (0.06, 0.11) and the partial intervention has an ATE of 0.12 (0.08, 0.14). This is
similar both in size and magnitude with the author’s chosen linear model.

Confirmatory subgroup analysis based on ideology Attitudes towards immigration is a polarizing issue
across partisan lines, thus we may expect that these effects are driven by the respondents’ ideologies. We
thus calculate the CATEs for three groups that are formed based on whether the respondent is conservative,
liberal or moderate. In Figure 5, we show the results of this exercise. As expected, the estimate of the CATE
differs by respondent’s ideologies – while both types of interventions have the lowest effect on republicans
the partial intervention has a slightly greater effect on the outcome for conservative respondents. Across the
two interventions, the effect of the treatment appears to be greater for liberal and moderate respondents.

Further, we test these differences by computing the CATE for the subgroup in each posterior sample. Indeed,
we find that for both the interventions, the differences in how conservatives and liberals or moderates respond
to the the treatment is meaningful. In the first treatment arm, for over 99% of the posterior samples, the
effect of the treatment for liberals or moderates is greater than the treatment effect for the conservative
respondents. In the second treatment arm, conservatives continue to have lower treatment effects relative to
liberals (in 99% of the posterior samples, the treatment effect for liberals is greater than the treatment effect
for moderates), but the differences in conservatives and moderates is not as stark as the first intervention.
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Figure 5: Narrative Strategies Effect by Ideology

Exploratory subgroup analysis #1 We now use the VCBART posterior samples to discover new sub-
groups – a data-driven approach to learn about heterogeneity across different units. To do so, we provide the
posterior means of βj(X) as inputs to fit a Classification and Regression Tree to obtain nodes and ‘splits’
that form sub-groups that best predict the treatment effects, and then test whether the subgroups formed
are meaningfully different from each other.

We observe in Figure 7 that indeed pre-treatment measures of ideology determine the magnitude of treatment
effect, as indicated by the first split based on t0 ideology which measures whether the respondent is liberal,
moderate or conservative. Further, we learn that within the conservative group of respondents, the treatment
effects for the most conservatives differ based on how self-reassured they report themselves to be. Particularly,
treatment does not appear to have any effect on respondent who identify as being ‘extremely conservative’
and ‘extremely confident in my abilities’ (which constitute about 10% of the sample, corresponding to a
treatment effect of -0.0077 as denoted in Figure 7). We test whether the sub-groups are meaningfully
different from each other by computing the difference of the average effect in each subgroup. From Figure
8, we can say that in 93% of the posterior samples, the most self assured conservatives had lower treatment
effects than other conservatives.

Next, we look at results from a second experiment in the same paper. In this experiment, the two treatment
arms include a ‘Full intervention’ (Z1) and the ‘Perspective Getting’ strategy only (where the canvasser
sharing a story about an immigrant) Z2.

Identification and Estimation #2 Similar to the previous two experiments, we are interested to under-
stand how the effect of treatments Z1 and Z2 vary with possible covariates. Forty covariates is captured for
each respondent – of which six are continuous (age, baseline outcomes etc). Together form our potential p
= 40 covariates X = (X1, X2, ...X40) that can drive treatment effect heterogeneity.

Let Y (0), Y (1) and Y (2) denote the potential outcomes under Z0, Z1 and Z2 respectively. Under SUTVA,
strong ignorability and overlap, we can identify the target estimand to be: CATE(x) = E[Y |Z2 = 1, X =
x] − E[Y |Z2 = 0, X = x] and CATE(x) = E[Y |Z1 = 1, X = x] − E[Y |Z1 = 0, X = x]. We estimate the
CATE(x) by estimating βj(X) in the varying coefficient model:

Y = β0(X) + β1(X)Z1 + β2(X)Z2 + ϵ (8)

Main Results #2 The authors estimate treatment effects using OLS with pre-treatment covariates and
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Figure 6: Narrative Strategies Effect: Comparisons among sub-groups
The figures in the first column compare sub-groups among the first arm of
the treatment. The figures in the second column compare sub-groups among
the second arm of the treatment.

Figure 7: CART for Partial Intervention

adjust for standard errors using clustering. We compute the ATE using VCBART by taking the average of
the sample average treatment effect associated with each posterior draw and find a treatment effect of 0.08
(0.04, 0.12) for the full intervention, and 0.07 (0.01, 0.13) for the perspective-getting only intervention. This
is substantively similar to the results reported by the authors.

Exploratory subgroup analysis #2. We now use the VCBART posterior samples to discover new sub-
groups as before for the perspective-getting only intervention. In Figure 9, we observe that if the respondent
is 65 or above in age, the treatment has a much lower effect. We use this insight to create two subgroups
associated with older and younger respondents and plot the difference in the treatment effects within the
subgroups in Figure 10. In all of the posterior samples, treatment effects for the older group were smaller
than the treatment effects for the younger group. While the average treatment effect is 0.07, we find that it
is largely driven by large effects for respondents below the age of 65.

5 Conclusion

Estimating heterogeneous treatment effects from varied research designs are valuable to highlight important
differences in how treatment effect varies by sub-groups. However, current approaches involve invoking
strong assumptions about linearity of effects and do not scale well as researchers attempt to explore multiple
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Figure 8: Conservatives: subgroups based on self-assurance

sources of heterogeneity.

In this paper, we introduce how estimating the treatment effects as flexible functions of covariates in a
varying coefficient model can overcome these shortcomings. We use VCBART to estimate the covariate
functions which has a number of advantages. Its ease of use and ability to discover sources of heterogeniety
make it a strong candidate for use in a large number of research designs – spanning multi-arm experiments
and difference-in-differences designs.
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Figure 9: CART fit based on Perspective-Getting Intervention

Figure 10: Testing Heterogeneity based on age
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